您的当前位置: 听力障碍 > 相关医院

研究丨基于软听觉噪声掩蔽和深度神经网络的

中科院声学所

声学前沿科学传播

声学所招生与招聘

在真实的声学环境中,尤其是户外录音时,语音信号的感知质量和可懂度通常会受到非平稳背景噪声(如风噪)的严重影响。风噪一般是由用户头部、记录设备或其他障碍物周围的湍流气流产生,会严重削弱语音通信的声音质量。

(图/Pixabay)

为了消除语音通信中的风噪、减少语音失真,中科院语言声学与内容理解重点实验室的白海钏、葛凤培等人提出了一种应用于实时通信的语音增强方法。相关研究成果发表于学术期刊ChinaCommunications年第9期。

深度神经网络模型可以通过利用特定环境中采音的大量数据,对风噪和语音成分进行有效估计。但是由于3kHz以下低频区域风噪与语音频谱的重叠性,该区域仍然不可避免存在少量残余风噪。在较低信噪比的条件下,残余噪声极易被人耳感知,从而导致增强后语音信号的听觉质量和可懂度明显下降。

基于软听觉噪声掩蔽原理,研究人员提出了一种新的基于深度神经网络的风噪语音增强方法。采用心理声学模型计算语音频谱的听觉掩蔽阈值,并结合软听觉噪声掩蔽原理构建基于频谱加权的语音增强方法。为了适应信号的快速时变特性,语音和噪声频谱均基于深度学习网络进行建模。

客观测试和主观评价结果均表明,与传统的基于深度神经网络的风噪抑制方法相比,这种新的语音增强方法有效地抑制了低频区域中的残余风噪,显著提升了降噪性能。

本研究获得国家自然科学基金(No.,)资助。

参考文献:

BAIHaichuan,GEFengpei,YANYonghong.DNN-basedSpeechEnhancementUsingSoftAudibleNoiseMaskingforWindNoiseReduction.ChinaCommunications(Volume15Issue9,September,Pages-).DOI:10./CC...

论文链接:




转载请注明:http://www.edlhp.com/xgyy/11044.html